30 research outputs found

    Depth Map Regeneration via Improved Graph Cuts Using a Novel Omnidirectional Stereo Sensor

    No full text
    An integrated framework mainly focusing on stereo matching has been presented in this paper to obtain dense depth maps for a mobile robot that is equipped with a novel omnidirectional stereo vision sensor that is designed to obtain height information. The vision sensor is composed of a common perspective camera and two hyperbolic mirrors, which are separately fixed inside a glass cylinder. As the separation between the two mirrors provides much enlarged baseline, the precision of the system has improved correspondingly. Nevertheless, the large disparity space and image particularities that are different from general stereo vision system result in poor performance using common methods. To satisfy the reliability requirement by mobile robot navigation, we use improved graph cuts method, in which more appropriate three-variable smootheness model is proposed for general priors corresponding to more reasonable piecewise smoothness assumption since the well-known swap move algorithm can be applied to a wider class of functions. We also show the necessary modification to handle panoramic images, including deformed matching template, adaptable template scale. Experiment shows that this proposed vision system is feasible as a practical stereo sensor for accurate depth map generation. 1

    Activated E2F activity induces cell death in papillary thyroid carcinoma K1 cells with enhanced Wnt signaling.

    No full text
    Disruption of Wnt signaling often happens in tumorigenesis, but whether Wnt signaling affects the early stages of thyroid tumor, such as papillary thyroid carcinoma, is still a question, especially in the papillary thyroid carcinoma without genomic RET/PTC mutation. In this study, we demonstrated the important function of Wnt signaling in papillary thyroid carcinoma K1 cells, which have no RET/PTC mutation. We found that K1 cells have enhanced Wnt signaling in comparison to normal thyroid cells. We further demonstrated that K1 cells require the enhanced Wnt signaling for growth and survival. Interestingly, we identified that enhancing E2F activity by either knockdown of Rb or overexpression of Cyclin D1 induces cell death in K1 cells. And we further revealed that the cell death is caused by enhanced oxidative stress. Our studies present a novel cell model to support the key roles of Wnt signaling in early stage of thyroid tumor, and also provide an alternative way to limit thyroid cancer

    The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites

    No full text
    Yunnan province in China has rich forest resources but high forest fire frequency. Therefore, a better understanding of the relationship between climate change and forest fires in this region is important for forest fire prevention. This study used the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage change (TWSC) data to analyze the influence of climate change on forest fires in the region during 2003–2016. To improve the accuracy and reliability of GRACE TWSC data, we used the generalized three-cornered hat (GTCH) and the least square method to fuse TWSC data from six GRACE solutions. The spatiotemporal variation of forest fires during 2003–2016 was investigated using burned area data. Then, the relationship between burned area and hydrological and climatic factors was analyzed. The results indicate that more than 90% of burned areas are located in northwestern and southern Yunnan (NW and S). On the seasonal scale, forest fires are mainly concentrated in January–April (dry season) and the burned area is negatively correlated with precipitation (correlation coefficient r = −0.83 (NW) and −0.51 (S)), relative humidity (r = −0.79 (NW) and −0.92 (S)), GRACE TWSC (r = −0.57 (NW) and −0.73 (S)) and evapotranspiration (r = −0.90 (NW) and −0.35 (S)). However, the burned area has no significant correlations with the above four factors on the interannual scale. The composite analysis suggests that the extreme climate affects precipitation, evapotranspiration and TWSC in this region, thereby changing water storage of the air in this region, leading to the formation of an environment prone to forest fires. Such conditions have led to an increase in the burned area in the above region. We also found that the difference between TWSC in high- and low-fire years is much greater than the precipitation in the same period. The above results show that GRACE satellites can detect the influence of climate change on forest fires in Yunnan province
    corecore